

TRINKWASSERKONFORME VERGUSSMASSE KLEIBERIT 542.4

2K PUR VERGUSSMASSE GEPRÜFT NACH KTW-BWGL DES DEUTSCHEN UMWELTBUNDESAMTES

KTW-BWGL ist die Bewertungsgrundlage des deutschen Umweltbundesamtes für Kunststoffe und andere organische Materialien, die in Kontakt mit Trinkwasser sind. Die geprüfte Wassertemperatur ist dabei 23 ± 2 °C, welche Kaltwasser bzw. frischem Leitungswasser entspricht. Die betreffende Filterart für diese Vergussmasse entspricht Produktgruppe P2 (Nebenkomponenten, bei denen der Anteil der mit Wasser in Berührung kommenden Fläche < 10% ist, bzw. für Rohre mit einem Innendurchmesser < 80 mm). Zusätzlich basiert KLEIBERIT 542.4 zu einem großen Anteil auf nachwachsenden Rohstoffen (> 40%).

HAUS- UND TRINKWASSERFILTRIERUNG

Hierbei kann die Vergussmasse als Alternative zur klassischen Ultraschalverschweißung dienen. geringere thermische Belastung der Filtermedien und ermöglicht weniger Beschränkungen bei der Filtergeometrie.

ANWENDUNGSGEBIET

- Grob- und Feinfilter in der Frischwasserleitung
- Kaltwasserhauseingangsfilter, die Leitungswasser von Sedimenten und Restpartikeln befreien
- direkt vor den jeweiligen (Kaltwasser)-Mischbatterien

VORTEILE

- geprüft nach KTW-BWGL
- basiert auf nachwachsenden Rohstoffen (> 40 %)
- gutes Fließverhalten durch niedrige Viskosität
- kurze Taktzeiten durch schnelle Reaktionszeit
- hochfeste Vergussmasse (hart-kompakt abbindend)

A- Komponente	B- Komponente	MV nach GT	Viskosität A [mPas]	Viskosität B [mPas]	Reaktionszeit (100 g, 20 °C) [s]	Zug- festigkeit [N/mm²]	Bruch- dehnung [%]	Shore D Härte
542.4	542.5	100:60	2.920	25	38	19,2	83,9	66